# Transfer Function MCQ’s

This set of Network Theory Multiple Choice Questions & Answers (MCQs) focuses on “Transfer Function”.

1. In the circuit shown below, if current is defined as the response signal of the circuit, then determine the transfer function.

a) H(s)=C/(S^{2} LC+RCS+1)

b) H(s)=SC/(S^{2} LC-RCS+1)

c) H(s)=SC/(S^{2} LC+RCS+1)

d) H(s)=SC/(S^{2} LC+RCS-1)

2. In the circuit shown below, if voltage across the capacitor is defined as the output signal of the circuit, then the transfer function is?

a) H(s)=1/(S^{2} LC-RCS+1)

b) H(s)=1/(S^{2} LC+RCS+1)

c) H(s)=1/(S^{2} LC+RCS-1)

d) H(s)=1/(S^{2} LC-RCS-1)

3. The transfer function of a system having the input as X(s) and output as Y(s) is?

a) Y(s)/X(s)

b) Y(s) * X(s)

c) Y(s) + X(s)

d) Y(s) – X(s)

4. Let us assume x (t) = A cos(ωt + φ), then the Laplace transform of x (t) is?

a) X(S)=A(Scos Ø-ω sinØ)/(S^{2}-ω^{2})

b) X(S)=A(Scos Ø+ω sinØ)/(S^{2}+ω^{2})

c) X(S)=A(Scos Ø+ω sinØ)/(S^{2}-ω^{2})

d) X(S)=A(Scos Ø-ω sinØ)/(S^{2}+ω^{2})

5. Let us assume x (t) = A cos(ωt + φ), on taking the partial fractions for the response we get?

a) Y(s)=k_{1}/(s-jω)+(k_{1}^{‘})/(s+jω)+Σterms generated by the poles of H(s)

b) Y(s)=k_{1}/(s+jω)+(k_{1}^{‘})/(s+jω)+Σterms generated by the poles of H(s)

c) Y(s)=k_{1}/(s+jω)+(k_{1}^{‘})/(s-jω)+Σterms generated by the poles of H(s)

d) Y(s)=k_{1}/(s-jω)+(k_{1}^{‘})/(s-jω)+Σterms generated by the poles of H(s)

6. The relation between H (jω) and θ (ω) is?

a) H(jω)=e^{-jθ (ω)}

b) H(jω)=|H(jω)|e^{-jθ (ω)}

c) H(jω)=|H(jω)|e^{jθ (ω)}

d) H(jω)=e^{jθ (ω)}

7. Let us assume x (t) = A cos(ωt + φ), what is the s-domain expression?

a) Y(s)=H(s) A(Scos Ø-ω sinØ)/(S^{2}-ω^{2})

b) Y(s)=H(s) A(Scos Ø+ω sinØ)/(S^{2}+ω^{2})

c) Y(s)=H(s) A(Scos Ø-ω sinØ)/(S^{2}+ω^{2})

d) Y(s)=H(s) A(Scos Ø+ω sinØ)/(S^{2}-ω^{2})

8. Let us assume x (t) = A cos(ωt + φ), what is the value of k_{1}?

a) 1/2 H(jω)Ae^{jØ}

b) H(jω)Ae^{-jØ}

c) H(jω)Ae^{jØ}

d) 1/2 H(jω)Ae^{-jØ}

9. Let us assume x (t) = A cos(ωt + φ), what is the value of k_{1} by considering θ (ω) is?

a) |H(jω)|e^{j[θ (ω)+Ø]}

b) A/2|H(jω)|e^{j[θ (ω)+Ø]}

c) |H(jω)|e^{-j[θ (ω)+Ø]}

d) A/2 |H(jω)|e^{-j[θ (ω)+Ø]}

10. Let us assume x (t) = A cos(ωt + φ), What is the final steady state solution for y (t)?

a) A|H(jω)|cos[ωt+Ø+ θ (ω)]

b) A|H(jω)|cos[ωt-Ø+ θ (ω)]

c) A|H(jω)|cos[ωt-Ø- θ (ω)]

d) A|H(jω)|cos[ωt+Ø- θ (ω)]

## Average Rating