Sinusoidal Response of an R-L-C Circuit MCQ’s

Read Time:3 Minute, 41 Second

This set of Network Theory Multiple Choice Questions & Answers (MCQs) focuses on “Sinusoidal Response of an R-L-C Circuit”.

1. In the sinusoidal response of R-L-C circuit, the complementary function of the solution of i is?
a) ic = c1 e(K1+K2)t + c1 e(K1-K2)t
b) ic = c1 e(K1-K2)t + c1 e(K1-K2)t
c) ic = c1 e(K1+K2)t + c1 e(K2-K1)t
d) ic = c1 e(K1+K2)t + c1 e(K1+K2)t

2. The complete solution of the current in the sinusoidal response of R-L-C circuit is?
a) i = c1 e(K1+K2)t + c1 e(K1-K2)t – V/√(R2+(1/ωC-ωL)2) cos⁡(ωt+θ+tan-1)⁡((1/ωC-ωL)/R))
b) i = c1 e(K1+K2)t + c1 e(K1-K2)t – V/√(R2+(1/ωC-ωL)2) cos⁡(ωt+θ-tan-1)⁡((1/ωC-ωL)/R))
c) i = c1 e(K1+K2)t + c1 e(K1-K2)t + V/√(R2+(1/ωC-ωL)2) cos⁡(ωt+θ+tan-1)⁡((1/ωC-ωL)/R))
d) i = c1 e(K1+K2)t + c1 e(K1-K2)t + V/√(R2+(1/ωC-ωL)2) cos⁡(ωt+θ-tan-1)⁡((1/ωC-ωL)/R))

3. The particular current obtained from the solution of i in the sinusoidal response of R-L-C circuit is?
a) ip = V/√(R2+(1/ωC+ωL)2) cos⁡(ωt+θ+tan-1)⁡((1/ωC+ωL)/R))
b) ip = V/√(R2+(1/ωC-ωL)2) cos⁡(ωt+θ+tan-1)⁡((1/ωC-ωL)/R))
c) ip = V/√(R2+(1/ωC+ωL)2) cos⁡(ωt+θ+tan-1)⁡((1/ωC-ωL)/R))
d) ip = V/√(R2+(1/ωC-ωL)2) cos⁡(ωt+θ+tan-1)⁡((1/ωC+ωL)/R))

4. In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the roots of the characteristic equation.

network-theory-questions-answers-sinusoidal-response-rlc-q4

a) -38.5±j1290
b) 38.5±j1290
c) 37.5±j1290
d) -37.5±j1290

5. In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the particular solution.

network-theory-questions-answers-sinusoidal-response-rlc-q4

a) ip = 0.6cos(500t + π/4 + 88.5⁰)
b) ip = 0.6cos(500t + π/4 + 89.5⁰)
c) ip = 0.7cos(500t + π/4 + 89.5⁰)
d) ip = 0.7cos(500t + π/4 + 88.5⁰)

6. The value of the c1 in the following equation is?
i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰).
a) -0.5
b) 0.5
c) 0.6
d) -0.6

7. In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complementary current.

network-theory-questions-answers-sinusoidal-response-rlc-q4

a) ic = e-37.5t(c1cos1290t + c2sin1290t)
b) ic = e-37.5t(c1cos1290t – c2sin1290t)
c) ic = e37.5t(c1cos1290t – c2sin1290t)
d) ic = e37.5t(c1cos1290t + c2sin1290t)

8. In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complete solution of current.

network-theory-questions-answers-sinusoidal-response-rlc-q4

a) i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰)
b) i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t – π/4 + 88.5⁰)
c) i = e-37.5t(c1cos1290t + c2sin1290t) – 0.7cos(500t – π/4 + 88.5⁰)
d) i = e-37.5t(c1cos1290t + c2sin1290t) – 0.7cos(500t + π/4 + 88.5⁰)

9. The value of the c2 in the following equation is?
i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰).
a) 2.3
b) -2.3
c) 1.3
d) -1.3

10. The complete solution of current obtained by substituting the values of c1 and c2 in the following equation is?
i = e-37.5t(c1cos1290t + c2sin1290t) + 0.7cos(500t + π/4 + 88.5⁰).
a) i = e-37.5t(0.49cos1290t – 1.3sin1290t) + 0.7cos(500t + 133.5⁰)
b) i = e-37.5t(0.49cos1290t – 1.3sin1290t) – 0.7cos(500t + 133.5⁰)
c) i = e-37.5t(0.49cos1290t + 1.3sin1290t) – 0.7cos(500t + 133.5⁰)
d) i = e-37.5t(0.49cos1290t + 1.3sin1290t) + 0.7cos(500t + 133.5⁰)

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %

Average Rating

5 Star
0%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%

Leave a Reply

Your email address will not be published. Required fields are marked *

Previous post Sinusoidal Response of an R-C Circuit MCQ’s
Next post Polyphase System MCQ’s