# Discrete Time Convolution – 2 MCQ’s

This set of Signals & Systems Multiple Choice Questions & Answers (MCQs) focuses on “Discrete Time Convolution – 2″.

1. What is this property of discrete time convolution?
x[n]*h[n]=y[n], then x[n]*h[n-n0] = x[n-n0]*h[n] = y[n-n0]
a) Distributive
b) Commutative
c) Sym property
d) Shifting property

2. What is the sum of impulses in a convolution sum of two discrete time sequences?
a) Sy = SxSh, Sx=∑x(k) and Sh = ∑h(n-k)
b) Sy = Sx+Sh, Sx=∑x(k-1) and Sh = ∑h(n-k)
c) Sy = Sx-Sh, Sx=∑x(k) and Sh = ∑h(n-k)
d) Sy = Sx*Sh, Sx=∑x(n) and Sh = ∑h(n-k)

3. What is the distributive property of a discrete time convolution?
a) [x1(n) + x2(n)]*h(n) = x1(n)* [x2(n) + h(n)]
b) [x1(n) + x2(n)] = x1(n)* [x2(n) + h(n)]
c) [x1(n) + x2(n)]*h(n) = x1(n)* h(n)+ x2(n) * h(n)
d) [x1(n) + x2(n)]*h(n) = x1(n)* h(n)* x2(n) * h(n)

4. How can a cascade connected discrete time system respresented?
a) y[n] = x[n] + t[n] + r[n]
b) y[n] = x[n] * t[n] * r[n]
c) y[n] = x[n] * t[n] + r[n]
d) y[n] = x[n] + t[n] * r[n]

5. How can we solve discrete time convolution problems?
a) The graphical method only
b) Graphical method and tabular method
c) Graphical method, tabular method and matrix method
d) Graphical method, tabular method, matrix method and summation method

6. Which method is close to a graphical method for discrete time convolution?
a) Matrix method only
b) Tabular method
c) Tabular method and matrix method
d) Summation method

7. How can a parallel connected discrete time system respresented?
a) y[n] = x[n] + t[n] + r[n]
b) y[n] = x[n] * t[n] * r[n]
c) y[n] = x[n] * (t[n] + r[n])
d) y[n] = x[n] + t[n] * r[n]

8. Which method uses sum of diagonal elements for discrete time convolution?
a) Matrix method only
b) Graphical method and tabular method
c) Graphical method, tabular method and matrix method
d) Graphical method, tabular method, matrix method and summation method

9. The sample of x(n)={1,2,3,1} and h(n)={1,2,1,-1}, origin at 2, is 7.
a) True
b) False

10. The convolution of x(n)={1,2,3,1} and h(n)={1,2,1,-1}, origin at 2, is?
a) {1,4,8,8,3,-2,-1}, origin at 4
b) {1,4,8,8,3,-2,1}, origin at 4
c) {1,3,8,8,3,-2,-1}, origin at 4
d) {1,4,8,3,-2,-1}, origin at 4

Happy
0 %
0 %
Excited
0 %
Sleepy
0 %
Angry
0 %
Surprise
0 %

5 Star
0%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%